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Abstract

We consider the 1-median problem in R
d with the Chebyshev-norm: Given n points with non-

negative weights, find a point that minimizes the sum of the weighted distances to the given
points. We propose a combinatorial algorithm for this problem by reformulating it as a fractional
b-matching problem. This graph-theoretical problem can be solved by a min-cost-flow algorithm.
Moreover, we show that there is a 1-median, which is half-integral, provided that the points have
integral coordinates.
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1. Introduction

Location problems are a well studied branch of operations research and are also important
from a practical point of view in order to minimize transportation cost or to serve clients in a best
possible way. The roots of location problems can be seen in an essay of Pierre de Fermat where
he posed the question: Where should a single facility be placed in the plane such that the sum
of the distances from a given set of three points is minimized. In the last century, the economist
Weber [9] extended the model by allowing an arbitrary number of points and by assigning weights
to the points. In his model the task is to find a point that minimizes the sum of the weighted
distances. In modern terminology this problem is the 1-median problem in the Euclidean plane
and is nowadays also known as the Fermat-Weber problem. It has been studied intensively by
many researchers (see e.g. [3] and the references therein).

In the last decades, a lot of different models have been considered. The number of facilities
that are required to be located was not fixed to one any more and the space in which the facilities
can be placed was varied. Continuous location problems (e.g. problems in R

d) and network
location problems, where the facilities can be opened on a graph, are the most studied problems.
Moreover, different objective functions can be investigated. One can analyze the sum of the
weighted distances (median problems) or one may be interested in minimizing the largest weighted
distance to a vertex (center problems). Recently, Nickel and Puerto [6] introduced the ordered
median function, which can be seen as a generalization of the median and center problems.

This paper focuses on the weighted 1-median problem in R
d where the distance between two

points is measured by the Chebyshev-norm. So far this problem is only well understood for d = 2.
In this special case, the Chebyshev-metric and the Manhattan-metric are very closely related and
using this fact a linear time algorithm is given in [4]. However, to the best of our knowledge
for d ≥ 3 no combinatorial algorithm is known so far. In [8], an algorithm is discussed for the
three-dimensional case that finds only near-optimal solutions in reasonable computational time.
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In this paper, we show that for d ∈ N the location problem can be reformulated as a fractional
b-matching problem and can thus be solved by a combinatorial algorithm.

This paper is organized a follows: In the next section the problem under consideration is
rigorously defined. Moreover, it is written as a linear programming problem which implies that
the problem can be solved in polynomial time. Afterwards it is shown that using Fourier-Motzkin-
elimination the problem is equivalent to the fractional b-matching problem on the complete graph.
This graph-theoretical problem can be solved as a min-cost-flow problem in a bipartite graph (see
e.g. [1]). In order to make the paper self-contained we shortly review the min-cost-flow instance
in the last section.

2. Problem Formulation

In this section, we define the 1-median Problem in R
d with the Chebyshev-norm formally:

Given n distinct points P1, . . . , Pn with Pi = (xi
1, . . . , x

i
d) ∈ R

d for i = 1, . . . , n and associated
non-negative weights wi ≥ 0 the task is to find a point P ∗ = (x∗

1, . . . , x
∗
d) ∈ R

d such that

n
∑

i=1

wi ‖Pi − P‖∞ ≥
n

∑

i=1

wi ‖Pi − P ∗‖∞

holds for all P ∈ R
d, where ‖Pi − P ∗‖∞ := max (|xi

1 − x∗
1|, . . . , |x

i
d − x∗

d|) is the Chebyshev-norm.
For d = 2 there is a well known optimality criterion. Given a point P0 = (x0

1, x
0
2) we define the

sets
X1

∼ := {i : xi
1 − x0

1 ∼ xi
2 − x0

2} and X2
∼ := {i : xi

1 − x0
1 ∼ −(xi

2 − x0
2)}

and
w(X1

∼) :=
∑

i∈X1
∼

wi and w(X2
∼) :=

∑

i∈X2
∼

wi

where ∼ is any of the relations <,≤, >,≥. Using this notation we can state the following theorem.

Theorem 2.1 (see e.g. [2]). The point P0 = (x0
1, x

0
2) is a 1-median if and only if the following

four inequalities are satisfied

w(X1
<) ≤ w(X1

≥) and w(X2
<) ≤ w(X2

≥)

and
w(X1

>) ≤ w(X1
≤) and w(X2

>) ≤ w(X2
≤).

Theorem 2.1 can be used to derive a linear time algorithm for the case d = 2 (see e.g. [4]).
However, for d ≥ 3 the optimality criterion is much more complex as shown in [5]) and does not
lead to an algorithm.

In order to develop a combinatorial algorithm for higher dimensions we rewrite the location
problem in the d-dimensional space as a linear programming problem. We can reformulate

min
P=(y1,...,yd)∈Rd

n
∑

i=1

wi ‖Pi − P‖∞

as

min
n

∑

i=1

wi zi

s.t. zi = max (|xi
1 − y1|, . . . , |x

i
d − yd|) i = 1, . . . , n

yk ∈ R, zi ∈ R i = 1, . . . , n, k = 1, . . . , d.

It is a well known fact that minimizing the sum of absolute values with linear constraints can be
transformed to an LP in standard form which has the following form:
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min

n
∑

i=1

wi zi (1)

s.t. zi + yk ≥ xi
k i = 1, . . . , n, k = 1, . . . , d (2)

zi − yk ≥ −xi
k i = 1, . . . , n, k = 1, . . . , d (3)

yk ∈ R, zi ∈ R i = 1, . . . , n, k = 1, . . . , d. (4)

Note that the problem can be formulated as linear programming problem and can thus be solved
in polynomial time. In the next section, we show that the LP given in (1)—(4) is equivalent to
the fractional b-matching problem and can even be solved by a combinatorial algorithm.

3. Reformulation as fractional b-matching problem

Due to the fact that the variables yk do not appear in the objective function of the problem
given in (1)—(4), we use the well known Fourier-Motzkin elimination technique to get rid of these
variables in the constraints. More precisely, if (y, z) is a feasible solution of the problem we know
that

xi
k − zi ≤ yk ≤ xi

k + zi

holds for all k = 1, . . . , d and i = 1, . . . , n. In particular,

max
i=1,...,n

(xi
k − zi) ≤ yk ≤ min

i=1,...,n
(xi

k + zi) (5)

is true for all k = 1, . . . , d. Moreover, by adding the inequalities (2) and (3) it can be seen that z

also satisfies
zi + zj ≥ xi

k − x
j
k

for all i, j = 1, . . . , n and k = 1, . . . , d, which is equivalent to

zi + zj ≥ d
ij
k ,

if we define d
ij
k := |xi

k − x
j
k|. Note that d

ij
k = d

ji
k follows directly from the definition. Moreover,

d
ij
k is non-negative and d

ij
k = 0 if and only if i = j. Thus, if (y, z) is feasible for the constraints

(2)—(4) then z is also feasible for following system of inequalities:

zi + zj ≥ dij ∀j = 1, . . . , n, i = j + 1, . . . , n (6)

zi ≥ 0 ∀i = 1, . . . , n (7)

where dij := maxk d
ij
k .

On the other hand, if there is a vector z satisfying (6) and (7) we can easily get a feasible
solution (y, z) of the linear programming problem (1)—(4) by setting yk to any value between
mini(zi + xi

k) and maxi(x
i
k − zi). It follows from the discussion above that this is always possible.

Hence, problem (1)—(4) is equivalent to the following linear programming problem

min
n

∑

i=1

wi zi (8)

s.t. zi + zj ≥ dij j = 1, . . . , n, i = j + 1, . . . , n (9)

zi ≥ 0 i = 1, . . . , n (10)

Before we consider the dual of this problem let us recall the definition of the b-matching
problem on a complete graph. Let G = (V, E) be a complete graph with a function b : V → N. A
b-matching is an assignment of non-negative integer values αij for all (i, j) ∈ E such that for each
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vertex i the sum of the values on the edges incident with i is not more than bi. The task of the
b-matching problem adapted to our setting is to find a longest b-matching, where the length of a
b-matching αij is given by

∑

(i,j)∈E

dijαij .

The integer programming formulation of this graph-theoretical problem is given by

max
∑

(i,j)∈E

dijαij (11)

s.t.
∑

(i,j)∈E

αij ≤ bi ∀ i ∈ V (12)

αij ∈ N ∀ (i, j) ∈ E (13)

It is easy to see that if we introduce for each constraint in (9) a non-negative dual variable
αij the dual linear programming problem of the location problem given in (8)—(9) is exactly the
linear relaxation of the problem given in (11)—(13) (with bi = wi). Thus, in order to find a
1-median it suffices to solve the fractional b-matching problem, i.e., the problem (11)—(12) with
(13) relaxed to αij ≥ 0 for all (i, j) ∈ E.

4. A Min-cost-flow algorithm for the fractional b-matching problem

In this section, we show how the fractional b-matching problem can be solved by a min-cost
flow algorithm in a bipartite network. This algorithm has already been suggested by Antsee[1],
who gave an algorithm to compute a solution for the fractional b-matching problem, which was
then used to find an optimal solution for the b-matching problem.

Let us define the bipartite graph G = (V1 ∪ V2, E) where V1 = {v1, . . . , vn} and V2 =
{v′1, . . . , v

′
n} and there is an edge (vi, v

′
j) for all i, j = 1, . . . , n. Moreover, each edge (vi, v

′
j)

has infinite capacity and the cost are given by −dij . Note that the edges (vi, v
′
i) have 0 cost. They

serve as slack variables to transform (12) into equality constraints. That is, for each vertex vi ∈ V1

we define a supply of bi and for each vertex vj ∈ V2 we define a demand of bj. A min-cost-flow
instance of that kind is sometimes also called a Hitchcock-Transportation-Problem and can be
solved in O(n3 log n) by a combinatorial algorithm of Orlin [7]. It is well known that, for integral
supplies and demands, this algorithm always computes an integral optimal flow f∗ : E → N to
this problem. However, more important for us is the fact that even for an integral cost function,
there exists a feasible integral potential, i.e., two functions π : V1 → N and π′ : V2 → N such that
π(i) + π′(j) ≤ dij holds for all edges (i, j). Using these values Antsee [1] has shown that

z∗i :=
1

2
(π(i) + π′(i)) (14)

and

α∗
ij :=

1

2

(

f∗(v′i, vj) + f∗(vi, v
′
j)

)

are optimal solutions to (8)—(10) and the linear relaxation of (11)—(13). Using these results we
can finally state the following theorem.

Theorem 4.1. If all given points of the 1-median problem have integral coordinates, then there
exists a half-integral 1-median P ∗.

Proof. If the coordinates and the weights of the given points are integral, it follows from (14) that
there exists an optimal solution (y, z) of (8)—(10) in which z is half-integral. Due to the fact
that we can choose y such that (5) is satisfied it follows that we can also construct a half-integral
vector y which gives the coordinates of a 1-median. The same holds for rational weights of the
points (i.e. the values wi and bi, respectively) as we may scale them by a common denominator

4



without changing the 1-median. Moreover, even for irrational weights the statement follows from
LP theory. Observe to this end that the polyhedron defined by (9) and (10) is rational. Therefore
all extreme points are rational and moreover they have rational supporting hyperplanes. Hence,
we obtain integral weights for the points that yield the same 1-median as the original weights.
Thus, the claim follows from the consideration above.
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